If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-19d=0
a = 1; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·1·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*1}=\frac{0}{2} =0 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*1}=\frac{38}{2} =19 $
| 58x-21=269 | | 98/n=14 | | 1.25=t/6.4 | | x9-512=0 | | x/2*x/2*3.14*240*21=180000 | | x/2*x/2*3.14*240*21=180 | | 7y+2=10 | | 4^x=0 | | 0x=2.3 | | m+3/4=4/5 | | x+21/2=338 | | 5p-4/6=2p+1/5 | | 5(3r-1)=-7(2+r) | | 556/3.14=y | | 5k=3(k-6) | | 4q-5=q+19 | | 25000-25000x=20000 | | 3+27x=6 | | 24000-24000x=20400 | | 3+27x=9 | | 20400-20400x=24000 | | 4=k10 | | (t)=19.6t-4.9t^2 | | 3-5x+12=40 | | x-1/3=2x-3 | | 6n=21* | | 1425=275x+50 | | 5000=275x+50 | | y=275(2005)+50 | | 190000-190000x=150100-75050x | | 190000-95000x=150100 | | 190000-(190000*0.50*x)=150100 |